
Figure 1: BA Book viewer framework Architecture

A Book, a Web Browser and a Tablet: How Bibliotheca Alexandrina's Book

Viewer Framework Makes It Possible

Bibliotheca Alexandrina (http://www.bibalex.org/)

Introduction

A lot of institutions around the world are engaged in multiple digitization projects aiming at preserving

the human knowledge present in books and availing them through multiple channels to people around the

whole globe. These efforts will sure help close the digital gap particularly with the arrival of affordable e-

readers, mobile phones and network coverage. However, the digital reading experience has not yet arrived

to its maximum potential. Many readers miss features they like in their good old books and wish to find

them in their digital counterpart. In an attempt to create a unique digital reading experience, Bibliotheca

Alexandria (BA) created a flexible book viewing framework that is currently used to access its current

collection of more than 220,000 digital books in five different languages which includes the largest

collection of digitized Arabic books.

Using open source tools, BA used the framework to develop a modular book viewer that can be deployed

in different environments and is currently at the heart of various BA projects. The Book viewer provides

several features creating a more natural reading experience. As with physical books, the reader can now

personalize the books he reads by adding annotations like highlights, underlines and sticky notes to

capture his thoughts and ideas in addition to being able to share the book with friends on social networks.

The reader can perform a search across the content of the book receiving highlighted search results within

the pages of the book. More features can be further added to the book viewer through its plugin

architecture.

BA’s Book Viewer Framework

BA’s book viewer framework provides several services that can be used to build a powerful book viewer

experience: morphological search in different languages, image processing, copyright management,

server load balancing and scalability, and a personalization engine that includes different types of

annotation services.

Figure 1.0 shows the different

components of the framework

representing the blueprint of a book

viewer. A book viewer is divided into

two main blocks; the client side

component and the server side

component. The client side handles the

user interface and the rendering of the

book on the different client platforms,

e.g. mobiles, tablets, web browsers and

gaming consoles. It provides features

like multiple level zooming, thumbnail

view, flip view and scroll view. The

current implementation of the book

viewer is internationalized into 3

different languages that can be extended.

http://www.bibalex.org/

Figure 2: BA Book Viewer

The server side holds the core logic of the book viewer. The Content Serving Layer streams the book

pages to the clients and performs the necessary image processing. It also streams the book text and word

coordinates. The Search Engine module performs search queries against the full content of the book. A

Copyright Engine coordinates access to the books by different clients based on a set of rules. A

personalization engine gives the user the ability to annotate the displayed content and share the book

across social networks.

The book viewer framework demonstrates a modular design that provides many benefits: it is possible to

disable any function that is not currently present using a simple configuration file, for example, the

implementer can decide to disable search within content if the textual content of the book is not available,

or he can decide to disable the personalization features if it is not possible to store user generated content.

The framework modularity makes it also possible to replace any engine implementation with another one

provided that it implements the same engine interface. All the server functionalities are available through

RESTful calls to the different clients. This abstract design provides great flexibility making it possible to

develop new clients as more devices arise.

The Client Side

A client is responsible for presenting the book to the user. Different clients communicate with servers via

a standard set of APIs to retrieve metadata, perform a search query, retrieve search results with highlight

information, authenticate and access annotation services. BA has currently different implementations of

the client varying from a web implementation supporting major browsers available at

http://dar.bibalex.org to an Android mobile and tablet implementation still under development.

BA’s web based book viewer (Figure 2) displays related books and provides sharing and embedding

information that can be used by users to spread the word about your content. The book viewer supports

skins and can easily be embedded in your current project where it blends with your current design. Once

the user decides to use the annotation features, he is required to authenticate. You can use any

authentication service provided that it implements the necessary interfaces on the server side. Once

authenticated, the user can add

his annotations. The different

kinds of annotations currently

implemented are highlights,

underlines and sticky notes.

The Book viewer implements

several strategies to streamline

the user experience. It caches

several pages in advance to

reduce the time spent by the

user to load the next page. The

viewer maintains a cache

window to enable the reader to move to and fro smoothly. If a reader decides to scroll through the book,

the book viewer waits till the cursor stops and starts to load the cache window around this location. The

viewer utilizes a simple format for the coordinates information rather than XML to reduce the time

required for loading. Whenever a page is loaded, the book viewer loads its word coordinate information

as well to be used in defining word selections and search highlights. Whenever the submits a search

http://dar.bibalex.org/

query, a request is sent to the Search Engine which in turn replies with a list of matching pages and

snippets containing the matched terms. The matching terms are used to extract the word coordinates of

the matching pages and display the Highlights. The viewer provides multiple levels of zooming. It

initially starts using Javascript to enlarge the page to a certain threshold. Once the threshold is reached,

another version of the image with a larger resolution is requested from the Content Serving Layer which

performs the necessary scaling. Until this higher resolution image is loaded, the viewer will display the

current version at a larger scale.

The Server Side

The server side of the book viewer framework provides RESTful services over HTTP with data

represented in JSON, a flexibility that makes it possible to develop multiple clients. The server side

consists of several components; a Storage Layer, a Content Serving layer, a Load Balancer, a Metadata

Engine, a Search Engine, a Personalization Engine and a Copyright Engine. The Storage Layer consists

of content storage nodes that stream the raw content of the book to the Image and Content Processors.

BA currently uses storage nodes based on commodity hardware which provide a cost effective way to

scale up as content increase. A storage abstraction layer provides a RESTful interface for fetching files

from the storage nodes. It isolates the underlying storage implementation and makes it possible to

implement different storage policies and several tiers of storage based on the frequency of use and other

factors: e.g. frequently used objects can be kept on the fastest storage tier. The Storage layer handles

caching and load balancing across storage nodes in addition to ensuring content availability through

redundancy. The Content Serving layer consists of powerful machines that perform the necessary image

conversion and scaling necessary for displaying the books on different devices. It caches the resulting

images and streams them to the clients together with page text and word coordinates to support the

different functionalities of the client. To improve the performance, the Load Balancer dispatches the

requests to the least utilized node in the Content Serving Layer. The Metadata Engine prepares technical

(e.g. number of pages) and bibliographic (e.g. title) information about the book in JSON format. The

implementer is responsible to translate the metadata standard used at the backend systems to JSON.

Metadata can be coupled with search URLs to provide means of performing further queries against the

whole collection when they are displayed as hyperlinks on the client. Solr is used at the heart of the

Search Engine. A different search provider, e.g. a data base or XML, can be used provided that it

implements the required RESTful interface. Using Solr, a search query results in a list of page hits with

highlight information and snippets, which when coupled with word coordinates makes it possible to mark

the search hits on top of the images of the book. The Personalization Engine supports different annotation

services that can be used by client to provide a richer user experience. The personalization engine can run

over traditional SQL databases, Solr Index or more specialized annotation servers e.g. Annotea
1
.

The Copyright and Access Engine coordinates access to the books based on their copyright information.

The copyright information is defined as a set of rules detailing if the object is in copyright, subject to an

embargo, the number of licenses you have for the display of simultaneous copies of this book, who have

the right to access this book and what actions are permitted (e.g. view, partial view, print, …etc). For

example, given several clients accessing your collection of books at the same time, the Copyright and

Access Module will coordinate with the different clients to make sure that the maximum number of

simultaneous copies of the book are not exceeded.

1
 The Annotea Project, http://www.w3.org/2001/Annotea/

http://www.w3.org/2001/Annotea/

Figure 3: Evaluating Copyright Rules

For a given book, the Copyright information can be translated into rules along three dimensions; time of

access, location of access (e.g. geographic location, IP range) and role of the user who requests access to

content. (Figure 3)

The Book Viewer Framework supports the organization of the books into groups (sets). A book might

belong to different groups. Groups are hierarchical and inherits rules from parent groups. Rules can be

defined on the group level or the book (leaf) level. Rules for child groups or leafs take precedence over

parent rules. The rules are stored in XML format. The Copyright and Access Engine evaluates and outputs

a token containing a list of actions to be implemented and understood by the Content Serving Layer and

the client side implementation. The token expires after a period of inactivity.

Conclusion and Future work

BA Book Viewer Framework presents a modular approach to implementing different types of book

viewers targeted towards emerging platforms like mobile phones, tablets and gaming consoles thus

increasing the exposure of the content to a variety of users. Its modularity helps the implementer to select

the components that are suitable for implementation for a particular environment in addition to the

flexibility to change the underlying implementation to integrate with the current systems. BA plans to add

the necessary APIs to allow implementers to extend the functionalities of the book viewers through

plugins. Development is underway to enhance the Storage Layer at the server side to ensure scalability

and performance. Although it is currently used for books, the BA’s Book Viewer Framework is currently

being extended to include any type of media object.

Based on the framework, BA implemented its book viewer currently used at the heart of several projects,

e.g. http://dar.bibalex.org with more features planned for addition, e.g. sharing annotations. Viewers for

different types of media objects are also being added to the development pipeline.

Copyright
Rules

Evaluation

Engine

Request Time

Request Location

User Role

List of Actions

http://dar.bibalex.org/

